Combined linear regression adaptation and Bayesian predictive classification for robust speech recognition
نویسنده
چکیده
The uncertainty in parameter estimation due to the adverse environments deteriorates the speech recognition performance. It becomes crucial to incorporate the parameter uncertainty into decision so that the classification robustness can be assured. In this paper, we propose a linear regression based Bayesian predictive classification (LRBPC) for robust speech recognition. This framework is constructed under the paradigm of linear regression adaptation of HMM’s. Because the regression mapping between HMM’s and adaptation data is ill posed, we properly characterize the uncertainty of regression parameters using a joint Gaussian distribution. A predictive distribution is derived to set up the LRBPC decision. Such decision is robust compared to the plug-in maximum a posteriori decision adopted in the maximum likelihood linear regression (MLLR). Since the specified distribution belongs to the conjugate prior family, the evolutionary hyperparameter is established. With the hyperparameter, the LRBPC achieves significantly better performance than MLLR adaptation in car speech recognition.
منابع مشابه
Linear regression based Bayesian predictive classification for speech recognition
The uncertainty in parameter estimation due to the adverse environments deteriorates the classification performance for speech recognition. It becomes crucial to incorporate the parameter uncertainty into decision so that the classification robustness can be assured. In this paper, we propose a novel linear regression based Bayesian predictive classification (LRBPC) for robust speech recognitio...
متن کاملCombined on-line model adaptation and Bayesian predictive classification for robust speech recognition
In this paper, we study a class of robust automatic speech recognition problem in which mismatches between training and testing conditions exist but an accurate knowledge of the mismatch mechanism is unknown. The only available information is the test data along with a set of pretrained speech models and the decision parameters. We try to compensate for the abovementioned mismatches by jointly ...
متن کاملTowards improving ASR robustness for PSN and GSM telephone applications
In real-life applications, errors in the speech recognition system are mainly due to inefficient detection of speech Ž . segments, unreliable rejection of Out-Of-Vocabulary OOV words, and insufficient account of noise and transmission channel effects. In this paper, we review a set of techniques developed at CNET in order to increase the robustness to mismatches between training and testing con...
متن کاملEffects of Bayesian predictive classification using variational Bayesian posteriors for sparse training data in speech recognition
We introduce a robust classification method using Bayesian predictive distribution (Bayesian predictive classification, referred to as BPC) into speech recognition. We and others have recently proposed a total Bayesian framework for speech recognition, Variational Bayesian Estimation and Clustering for speech recognition (VBEC). VBEC includes an analytical derivation of approximate posterior di...
متن کاملRobust speech recognition based on Viterbi Bayesian predictive classification
In this paper, we investigate a new Bayesian predictive classi cation (BPC) approach to realize robust speech recognition when there exist mismatches between training and test conditions but no accurate knowledge of the mismatch mechanism is available. A speci c approximate BPC algorithm called Viterbi BPC (VBPC) is proposed for both isolated word and continuous speech recognition. The proposed...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2001